
TURBULENCE ENERGY BALANCE IN REACTING TURBULENT FLOWS 

V. B. Librovich and V. I. Lisitsyn UDC 532o517.4 

The turbulence accompanying combustion and the propagation of detonation waves in 
gases has been studied theoretically and experimentally in many papers [1-8]. The 
attention of researchers has been concentrated on essential questions like how the 
turbulent flow field interacts with the kinetics of the chemical reaction and to 
what extent the process of chemical change is intensified, and how the turbulence 
itself is deformed by the heat released and the accompanying expansion of the gases. 
The various mechanisms proposed for these phenomena are based on various hypotheses 
concerning the structure of the combusion zone and the determinative stage of the 
interaction of the turbulence with the chemical-reaction kinetics. The mechanism 
of turbulence generation by combustion proposed in a number of papers [3-6] is 
based on the observation in turbulent flow of a weakly curved flickering laminar 
flame. This gives rise to a nonuniform flow field of the gas, part of the energy 
of which goes over into the energy of turbulent fluctuations. Other authors [7, 
8] considered the turbulence field to interact with the chemical-reaction kinetics 
via a volume mechanism and suggested a criterion of turbulence intensification 
based on certain physical considerations, e.g., the condition for the intensifi- 
cation of thermogaskinetic oscillations proposed by Rayleigh [9]. In the present 
paper the problem is analyzed by introducing Kolmogorov's general equation for the 
turbulence energy balance in reacting turbulent flows [i0]o In accordance with 
this equation the turbulence energy can vary due to energy exchange between the 
turbulent motion and the mean gas flow as a result of the work on turbulent mass 
transport in the acceleration field of the mean flow, and due to the effect of 
pressure fluctuations on the rate of thermal expansion from the chemical reaction. 
Each of these effects is considered and analyzed. 

l. 
fluid, 

We commence from the equation of motion and continuity of a compressible viscous 
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w h e r e  0 i s  t h e  d e n s i t y  o f  t h e  f l u i d ;  u i a r e  t h e  c o m p o n e n t s  o f  v e l o c i t y ;  p i s  t h e  p r e s s u r e ;  
e i a  i s  t h e  v i s c o u s  s t r e s s  t e n s o r ;  t i s  t i m e ;  x a a r e  t h e  c o o r d i n a t e s ;  6 ~ .  i s  t h e  K r o n e c k e r  
d e l t a ;  6 i ~  = l f o r  i = ~ ;  6 i ~  = 0 f o r  i # a .  R e p e a t e d  i n d i c e s  i m p l y  s u m m a t i o n  o v e r  a l l  
c o o r d i n a t e s .  

We r e p r e s e n t  a l l  h y d r o d y n a m i c  q u a n t i t i e s  y i n  t h e  f o r m  o f  a sum o f  t h e  mean ( i n  t h e  
sense of the mathematical expectation) component <y> and the fluctuation y'. Utilizing 
the properties of the operation of averaging and carrying out identical transformations on 
Eqs. (i.i) and (1.2), we obtain the following equation describing the balance of the fluc- 
tuation energy per unit volume of the turbulent flow <E> [10-12]: 

,, <F> ._ o [<E> + <E<.> < p ' < >  - -  = 
r 1 Ox a 
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a <z,.,> 
/ I ' - -  ,p  u i> <u=> 0 7 ~  ' <E> = <pu~u[>/2.  ( 1 . 3 )  

The te rms  on the  r i g h t  s i d e  o f  Eq. (1 .3 )  p l a y  the  r o l e  of  volume s o u r c e s  ( s i n k s )  of  
fluctuation energy; the expression in square brackets on the left side of (1.3) describes 
the redistribution of the energy of the turbulent motion in space. The first term on the 
right side is connected with the dissipation of the energy of the turbulent motion due to 
molecular viscosity. The second term, which characterizes the work by pressure fluctuations 
in the turbulent expansion (compression) of the gas, is nonzero only in the case of a com- 
pressible gas. If there is no chemical reaction giving rise to the thermal expansion of the 
gas, then positive pressure fluctuations (p' > 0) lead to the compression of the gas (Su~/dx~ 
d0), so that the overall sign of this term is negative. If, however, an exothermal reac- 
tion takes place in the gas, positive pressure fluctuations can increase and negative de- 
crease the rate of the reaction and, correspondingly, change the expansion of the gas so 

that the sign of the term p' / 0~\ \\p~/ may be positive, which corresponds to the action 

of a source of fluctuation energy. 

The third term on the right side, which characterizes energy exchange between the tur- 
bulent motion and the mean motion of the gas, is essentially connected with the kinematic 
picture of the mean motion. For example, in the case of a one-dimensional mean motion, an 
exothermal reaction leads to the expansion and the acceleration of the flow and part of 
the energy of the turbulent motion goes over into kinetic energy of the mean motion (--<p> 
<u">d .<u)Idx~O; for definitness it is assumed here and below that the gas flow moves in 
the direction of positive x). 

Finally, the last term on the right side is connected with the work on turbulent mass 
transport in the acceleration field of the mean flow. Since in turbulent flows with combus- 
tion the density fluctuations are determined primarily by the temperature fluctuations, it 
follows that a positive velocity fluctuation, which brings colder gas to the point under con- 
sideration, leads to a positive density fluctuation. Accordingly, in the simplest case of 
a one-dimensional mean flow, this term also plays the role of a sink of turbulent energy 

( -  d dx < o). 

2. As an example of the interaction of the chemical reaction kinetics with the turbu- 
lent fluctuations of a gas flow we consider combustion in a homogeneous chemical reactor and 
the so-called induction mode of combustion. We consider a developed turbulent gas flow in 
which transport of momentum, matter, and energy by the fluctuations occurs much more in- ! 
tensively than molecular transport porcesses, so that the terms containing oi~ can be ne- 
glected in Eq. (1.3). 

A homogeneous chemical reactor in which an exothermal reaction takes place is the 
simplest example of the interaction of turbulence with a reacting medium. In this case all 
the properties of the turbulent motion are identical over the whole volume of the reactor, 
which permits of the maximum possible simplification of the equation describing the fluc- 
tuation energy. Integrating Eq. (1.3) over the volume of the reactor gives 

m ((e> - -  <e>o) -- < p '  a u ; \  (2 .1 )  

Here m is the mass flow rate through the reactor; V is the Volume of the reactor; and 
<e> = <u~u[>/2 is the energy of the turbulent motion of unit mass of gas. The index 0 refers 
to the value of the fluctuation energy at the reactor inlet. 

In order to calculate the work of the pressure fluctuations we return to the balance 
equation for the thermal energy of a compressible gas and write it, utilizing the equation 
of state of a gas p = pRT (R is the gas constant), in the form 

k _ l p ~ = : q ( D ( T , a ) - - k _ l k a t  u~x d, (2 .2 )  
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where k = cp/Cv; Cp and @v are the specific heats of the gas at constant pressure and 
constant volume; q is the thermal effect of the reaction; ~(T, a) is the rate of the reac- 
tion; T is the gas temperature; and a is the concentration of the reacting component in 
the gas. The molecular thermal conductivity is omitted in Eq. (2.2) as we are considering 
the case of developed turbulence. A relationship determining the work of the pressure 
fluctuations can be obtained from (2.2). To this end we perform two averaging operations: 
first of all, we average Eq. (2.2), and then we average the equation obtained by multiplying 
(2.2) by p' Solving the obtained relationships for the sought-for quantity and neglecting 
the second power of the relative pressure fluctuation p'/<p>, which is proportional to the 
Mach number of the turbulent motion, compared with the first, we obtain 

p, 8u'i k -- I a 
_-= . '- < p '  c[)";. (2.3) 

~,/ h" < p> 

The fluctuations of the heat-release function $' are connected with the fluctuations 
in the temperature and in the concentration of the reacting substance. At large activation 
energies of the reaction the effect of concentration fluctuations is negligible compared 
with the effect of temperature fluctuations. We restrict the discussion to sufficiently 
small temperature fluctuations and utilize the linear representation ~' = (d~/dT)T'; to 
determine T'(t) we consider the linearized equation of thermal conductivity in Lagrangian 
coordinates: 

/ \ dT' dp" d @  T ' .  
c, ,  ,p, ,~  ({t -- q c T T  (2.4) 

To calculate the correlation <p'T'> we make use of the ergodic hypothesis: a time aver- 
age at a fixed point in space we replace by a time average at each fixed particle with a 
subsequent average over the total time the various particles remain in the reactor. 

c~ 

We represent the pressure fluctuations at a particle of material in the form p' X~ 
IZ= ] 

p,~si, n0)t , where Pn are the coefficients of expansion of p' in a trigonometric series and 
is the frequency of the pressure fluctuations. With this expression of p' we solve (.2.4) 

for the temperature fluctuations and obtain, subject to the initial condition T' = 0 at 
t=0, 

Here t c = Cp<p>q(d~/dT) is the characteristic time of heating of the gas from the chemical 
reaction, and s = mt c. 

For an individual particle spending a time to in the reactor we have 

I "" "~ T; 6') dt I- ~ ,,',:~ 

I S i l l  l~(,)t o e x ] )  '~" e x p  ( . ~ )  . < 
~~ "I -- n-'.~ ~ 'I n-'.,': ,. 

>< c o s  n o ) t  o - -  t :- ,,-. ( c o s  (Iz -~- m )  cot,., - -  t )  - -  

m [ i '1 
i ( c o s  ( n . -  m~ (,~to - i )  ~ -  - -w L~ ~ _ ,,~ s i ~  (~z - -  m )  co4, - - -  

i ?  I l l  " " - -  l~ i -  III, 

Due to the turbulent character of the motion of the gas different particles spend 
different times in the reactor. In order to average relationship (2.5) over to and obtain 
the correlation function <p'T'> we require to know F(to), the probability density distribu- 
tion over times to spent in the reactor. Let us suppose that F(to) conforms to the 
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normal law, i.e., 

F (to) = (aa)- - i~  exp  I (~ --~t~>)~,], (2.6) 

where <to> is the mean time spent by the gas in the reaction; z is the dispersion of the 
distribution law; and the factor (~)-,/2 is chosen from the normalization condition 

S F(to) dt o = 1. ( 2 . 7 )  

The limits of integration in (2.7), as in the calculation of subsequent integrals con- 

taining F(to), are taken to be infinite. This approximation represents the asymptotic limit 
for <t0>~/c>>1 , when the characteristic spread of the time spent in the reactor is much less 
than the mean time <to>, so that the natural time segment of the problem [0, <to>] for in- 
tegration is "infinitely large." 

Averaging relationship (2.5) with respect to t o for density distribution (2.6) leads 
to the appearance of integrals of the form 

(a(O - ' ,2_co; s i n [ (n  -{-m)COto] exp[--(.t .o--/to>)2.]dto ----exp[ (n+m--)=~~ ] + re)c~ (t~ 

the values of which are strongly dependent on the parameter 2~. By virtue of the stochastic 
character of developed turbulence we shall consider the characteristic spread of the time 
spent in the reactor (~),/2 to span sufficiently many turbulent fluctuations ~2~ >> i. On 
going, after averaging, to the limit ~2a + ~, we obtain 

<p'T'> t " { p, k - -  I ~ ,~  P.Pm 
<p> <T-------~ := %---7".. __.i dto '..0 (t) T, (t) dt ,~=, ,~= <--~T > . . . . .  

~ 4 , m  

o~ 2 

.< ,ns' [ n t ! 1@ k~_i[ l ,"  P;~ h U . ,  ( 2 . 8 )  
t @ m2s - - - - - ~  A 't.!-~e 2s .a (n -i- m) "j- 2s 2 (n -- m) ~ A.~ <{p>e 

where 

" \ " "*~ [ | i  n ~ , n I h :-= t j . \ to . .  U.  - : i  n"s 2 -iTs ̀-' 4ns = i ., h - J : - '  

The result of the averaging, (2.8), does not depend on the dispersion of the normal 
distribution law. It can be shown that in the limit (t0)2/q>>l,~o2~>>ithe result of the 
averaging is also independent of the form of the probability density distribution. 

At high frequencies of the turbulent fluctuations, when the time of heating of the 
gas t c is much greater than the period of the turbulent fluctuations ~,)~(s>>J) , we obtain 
from (2.8) a relationship corresponding to an adiabatic dependence of the gas temperature 
on the pressure fluctuations (the chemical reaction does not have time to exert any sig- 
nificant effect): 

9 
</7"> a -  t pT~ 
<p) <T> 2k n = l  <--~2" 

A more simple expression is obtained from (2.8) if the pressure fluctuations are assumed 
to have only a single frequency (a degenerate spectrum). In this case only a single term 
with n = m = I remains in the series in (2.8): 
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<p'T'> ~ - - ~ (  P~ 12h h - l +  4~ . ( 2 . 9 )  

In the general case, in order to calculate the correlation <p'T'> we require to know 
the frequency spectrum of the pressure fluctuations in the turbulent flow. Use may also be 
made of the spectrum of the velocity fluctuations of the flow, bearing in mind the following 
relationship for isotropic and homogeneous turbulence between the amplitudes of the pressure 
and the velocity fluctuations: 

p '  = g<p> u", (2. i0) 

where the coefficient of proportionality g~0.7. This relationship derives from theoretical 

and experimental investigations [13]. 

We turn now to the relationships describing mass and thermal-energy balance in the 

reactor: 

m= < p > rtKto>; 

m%( ( T > --  To)= VqCP. 

(2.11) 

(2.12) 

In Eq. (2.12) the thermal energy converted into the energy of turbulent motion is 
ignored; estimates show that these losses are small compared with the total store of heat 
in the reactor. 

Utilizing mass balance equation (2.11), the turbulence-energy balance equation (2.1), 
and relationships (2.3), (2.9), and (2.10), we obtain the following expression for the 
energy of the turbulent motion in a reactor in the case of pressure fluctuations with a 
single frequency: 

where 

(2.13) <e> o F 

8 F = -5- g~ (k - -  t) M~U~ (s, h); 

U , =  ~ [  ~ ~ - ~  ] 
M = (<e>o)u%/(k <p> "<,)>)u% 

and M is the Math number of the turbulent motion of the initial flow. 

The variation of the energy of the turbulent motion in the reactor depends on the 
frequency of the pressure fluctuations through the parameter s = mt c. If h > 1.5, the func- 
tion UI determining the dependence on frequency has a maximum at s=s,~ [(5h~3)/(3h -- 2)]~/< 
If h < 1.5, the function U~ increases monotonically with increasing s, reaching at large s 
the limiting value UI = ~/2h -I. The dependence on frequency of the intensity of generation 
of turbulence energy leads to a deformation of the frequency spectrum of the fluctuation 
velocity of the initial turbulent flow. 

The heat balance equation imposes a constraint on the region of variation of the param- 
eter h. Differentiating (2.12) with respect to <T>, we obtain h = i. 

By (2.13) the maximum twofold increase of the energy of the turbulent motion is achieved 
at l'-i. For F>I no steady modes of turbulent motion inthe reactor exist. The disruption 
of the steady mode is connected with the nonlinear dependence of the work of the pressure 

( / /p~ On l \ 
fluctuations on the turbulenece energy in the reactor ".~ __ N \e/ I whereas the 

d,c t : 

removal of the energy of the turbulent motion from the reactor depends on it linearly. 

For g~0.7, k=14 and s>>1 the value of the parameter F-026M ~ and, by (2.13), the 
increase of the energy of turbulent motion becomes significant only at velocities of turbulent 
motion close to sonic. Thus; for example, for M = i we obtain F=0.2(i, /e ~'/~\\ / ~/~ ~I [5 . Under 
conditions of turbulent flame propagation the turbulent velocities are usually much less than 
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sonic, with the result that the generation of turbulence in flames due to the work of the 
pressure fluctuations can be neglected. 

3. In order to illustrate the effect of spatial inhomogeneity of the mean flow on 
the balance of the fluctuation energy in reacting flows we consider a steady on-average-one- 
dimensional turbulent flow in which the gas is accelerated due to an influx of heat from a 
volume chemical reaction. Simplest of all is the so-called "induction mode of combustion" 
[14], in which the initial velocity of the flow is so large that convective transport of 
heat and matter greatly exceeds transport due to turbulent thermal conductivity and dif- 
fusion, so that the latter can be neglected. 

In order to investigate the effect of spatial inhomogeneity it is necessary to know 
the spatial distribution of the mean flow velocity, the mean temperature, and the mean gas 
density. In calculating the mean values we utilize the fact that the fluctuations of the 
hydrodynamic quantities in a turbulent flow amount to a small fraction of the mean values, 
so that the equation of the fluctuation energy has a higher order of smallness than the 
equations for the mean values of velocity, temperature, and density. Accordingly, when 
calculating from the latter equations the coefficients before the fluctuating components in 
the fluctuation-energy balance equation, we can neglect the influence of turbulent effects 
on the distribution of the mean quantitities. 

In the induction mode the concentration and temperature fields are similar, with the 
result that the heat-release function proves to be dependent on temperature alone. Inte- 
grating the equation of thermal conductivity subject to the condition <T> = <T> o at x = 0 

we obtain 
(T> 

S / \ \ " \ [(I) (3 1)  x = [,P~o ,'~/o cp/q] (<T>)]- '  d ..T~. 
(T>o 

Knowing the temperature distribution, we can use the equation of state 

< p > / ( T > = < p > / R = c o n s t  (3.2) 

to determine the density distribution, and the equation of continuity 

<P> <'~}= (P}0 ~u}0 = c~  ( 3 . 3 )  

t o  d e t e r m i n e  t h e  mean  v e l o c i t y  d i s t r i b u t i o n .  

The i n d e x  0 r e f e r s  t o  t h e  v a l u e s  o f  t h e  p a r a m e t e r s  o f  t h e  i n i t i a l  f l o w .  

F o r m u l a  ( 3 . 1 )  d e t e r m i n e s  a c h a r a c t e r i s t i c  s p a t i a l  s c a l e  x~ i f  we s u b s t i t u t e  i n t o  i t  
a c h a r a c t e r i s t i c  t e m p e r a t u r e  ( e . g . ,  t h e  t e m p e r a t u r e  o f  c o m b u s t i o n ) .  

L e t  u s  now a n a l y z e  Eq.  ( 1 . 3 )  d e s c r i b i n g  t h e  b a l a n c e  o f  t h e  f l u c t u a t i o n  e n e r g y .  We 
c l o s e  i t  b y  i n v o k i n g  h y p o t h e s e s  t h a t  c a n  b e  r e g a r d e d  a s  t h e  l i n e a r  e x p a n s i o n  o f  t h e  c o r r e l a -  
t i o n s  a s  a s e r i e s  i n  t h e  g r a d i e n t s  o f  t h e  mean  q u a n t i t i e s  [ ; 3 ]  

- -  4 / \ . (eui}  vlL  ((e}) ~2 d ,,e?/dx, ( 3 . 4 )  

(p'u~} = - -  v~L( (e} )  1 2 d (p>/dx; ( 3 . 5 )  

�9 , 2 <p> ( e ) .  ( 3 . 6 )  <,o> (u~ui) = --5- 

R e l a t i o n s h i p  ( 3 . 6 )  i s  a p a r t i c u l a r  c a s e  o f  t h e  m o r e  g e n e r a l  r e l a t i o n s h i p  

[ 0 -  0 ] '2 \P  i l  ~P j r  
" ' " ' "" (~)) (e) 5~j v3L ~'~'g/ '~ - ~ - -  , 

= - -  \ \ " / ' f  0 3 j  d , z  i ,,pl \ ~ i u i /  3 

6~j= t, i = j; 6~j= O, i=~ ], 

characterizing the connection between the turbulent stress tensor and the strain tensor in 

a turbulent flow [13]. 
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It is assumed in these relationships, as in [i0-12], that the coefficients of turbulent 
transport of fluctuation energy in (3.4) and mass in (3.5) are proportional to the square root 

of the fluctuation energy and to the scale of the turbulence L; vl, v2, v3 are dimensionless 
proportionality coefficients. 

We shall assume that the local properties of homogeneity and isotropy of the turbulent 
field are conserved during combustion. Accordingly, the correlation between the pressure 
and the velocity fluctuations <p'u~> may be neglected. 

We bring the fluctuation-energy balance equation (1.3) and the closure hypotheses (3.4)- 
(3.6) to dimensionless form by choosing as scale values for<e>, <u>, <p>, and x their charac- 
teristic values <e>0, <~>0, <P>0 , and x,. We then obtain for a one-dimensional steady flow (the 
averaging sign over the dimensionless quantities is omitted) 

d (pue - f~-e-v 1 (e)t'2 /--~z ) - 2 pe du 1 (e//Z du dp 
3 -~f+--~-~p v~ Udz  dz' (3.7) 

where P e =  <U>ox,/L((e>o)t/2 is the turbulence Peclet n u m b e r ;  z = x / x , ,  8= (<e>o)t/2/~u> o is the in- 
tensity of the initial turbulence. 

The induction mode of combustion in a turbulent flow is characterized by a large value 
of the Peclet number. If Pe is so much greater than unity that also 82Pe>>i (for example, 
because x./L>>i) , then in (3.7) we may neglect turbulent diffusion and the expenditure of 
fluctuation energy on turbulent mass transport [the second and fourth terms of Eq. (3.7)]. 
Integrating the correspondingly simplified Eq. (3.7) and remembering the continuity equation 
(3.3), we obtain the fluctuation energy as a function of the flow velocity: e=e-2/3 , from 
which we see that with increasing velocity the fluctuation energy decreases -- it goes over 
into energy of the mean motion. The flow can be accelerated under such conditions in various 
ways. In the present case of the induction mode of combustion the flow is accelerated due 
to the heat release in the chemical reaction. In order to calculate the spatial distribu- 
tion of the fluctuation energy, recourse must be made to Eqs. (3.1)-(3.3)o 

At small initial turbulence intensities the last term in Eq. (3.7), describing the 
expenditure of fluctuation energy on turbulent mass transport, begins to play a greater 
relative role. Considering the aymptotic case of Pe>>1, but 8~PeNI , we can write the 
solution of Eq. (3.7) subject to (3.3) in the form 

{ ~ S [ u ( z ) l - ~ 3 { ~ d z l  ~ e (z) = [u (z)] -2/3 I ~ p ~ _ ~  V~ j j .  (3.8) 

It can be seen from (3.8) that turbulent mass transport in the acceleration field of the 
mean flow leads to a further reduction of the energy of the turbulent motion. 

An approximate computation of the integrals in (3.8) and (3.1) leads to the following 
relationships describing the dependence of the energy of the turbulent motion on the temper- 
ature in the flow and the dependence of temperature on the coordinate: 

e (0) = [a ~- ( a  - -  1) (0/0o) ] -2 /3  I ~;~ l I (0) ; 
4 (s Pe) ~ 

z = a P e {  [Ei(0o) - -  Ei(]0[)] - -  ( exp O o - -  exp 1Ol)}, 

(3.9) 

(3.1o) 

S expt  
where Ei (x) - --o~ ---[-- dt is the exponential integral ; 

I ( O ) = ( ~ o l ) ~ i + [ a + ( a - - l ) ( O / O o ) ]  -w3} ((101+ i ) : e x p 0 - - ( 0 o +  l ) e x p ( - - 0 o ) l ;  ( 3 . 1 1 )  

a=<T>h/<T>o is the ratio of the temperature of combustion in the flow to the initial tem- 
perature ; and 

o = E (<r> - -  <T>~)/R <T>~; 0o = E (<r>~ - -  <T>o)/R <T>i  
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The derivation of formulas (3.9)-(3.11) utilizes the heat-release function written 
allowing for the similitude of the concentration and temperature fields and for the varia- 
tion of the density of the reacting gas: 

�9 (o)= IOl (<p>/<p>o) exp o. 

The characteristic scale x, was taken as z,= [L(<e>o)il2 t, ]; t, = ~exp - R~ ms the 

time of the chemical reaction at temperature <T> k and at the initial density and concentra- 
tion of the reacting material; ~ is a pre-~xponential factor. 

On complete combustion of the material the energy of the turbulent motion decreases to 
a value ek, given by relationships (3.9) and (3.11) on inserting into them 0 = 0: 

(§176 o, 
e k = 1 -  "4- (<e>o)V,Z/<u>,} j , 

where <u>, = [L(<e~o//~t,]'/2(2/~)u2/Oo is the velocity of normal propagation of a turbulent flame 
along the reacting gas. 

Figures i and 2 show plots of the turbulence energy distribution versus temperature and 
the coordinate in the flow; Fig. 3 shows plots of the final energy of the turbulent motion 
versus the parameter ~ for various values of (<e>o)I/2/<u>* Curves i and 2 in Figs. i and 
2 were plotted for ~=7.7, 00=7.6, Pe=i0, ~2=I for various turbulence intensities of the initial 
flow si=0.05, e2=0.025 . In Fig. 3 curves i-4 correspond to various values of the parameter 
r=(<e>o)l/V<u>,: r1=3,6, r2=5, rs=7,  r4 >> I. 

Figure 3 shows that if the fluctuation velocity of the initial flow is less than a 
certain value dependent on ~ and <u>,, then the turbulent flow can go over into laminar 
right up to complete combustion of the reacting gas. 

Transition from a turbulent mode of gas flow to a laminar have been observed in experi- 
mental investigations [15]. Such transitions were observed in cases when the flow experienced 
a sufficiently strong acceleration. The characteristic values of the accelerations were 
taken as criteria indicating decay of the turbulence. The theoretical analysis made in [15] 
indicates that laminarization of a turbulent flow is also possible in the case of the in- 
duction combustion of the fuel gas mixture. 

We are deeply indebted to G. I. Barenblatt for directing our attention to the problem 
discussed in the present paper. 
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